External

 Littelmann Paths of Kashiwara Crystals of Type A rank eOla

Schaps

External Littelmann Paths of Kashiwara Crystals of Type A rank e

Ola Amara-Omari ,Malka Schaps

Bar-Ilan University
Combinatorics and Representation Theory
July 23-27, 2018

Table of Contents

External

Littelmann
Paths of Kashiwara Crystals of Type A rank e

Ola
Amara-Omari
,Malka
Schaps

Kashiwara
crystals of Type A

Littelmann paths

The case of $e=2$

The Main Result

The case $e=3$

Bibliography

1 Kashiwara crystals of Type A
2 Littelmann paths
3 The case of $e=2$
4 The Main Result
5 The case $e=3$
6 Bibliography

Kashiwara Crystals $B(\Lambda)$

External

 Littelmann Paths of Kashiwara Crystals of Type A rank e Ola Amara-Omari ,MalkaSchaps

Kashiwara crystals of Type A

Littelmann
paths
The case of $e=2$

The Main Result

- Let \mathcal{G} over \mathbb{C} be an affine Lie algebra of type A rank e.
- Let Λ be a dominant integral weight.
- $V(\Lambda)$ is the highest weight representation.
- $\alpha_{0}, \ldots, \alpha_{e-1}$ are a simple roots.

■ Let Q be the \mathbb{Z}-lattice generated by the simple roots.
■ $P(\Lambda)$ is the set of weights of the weight spaces of $V(\Lambda)$, which are of the form $\lambda=\Lambda-\sum_{i=0}^{e-1} k_{i} \alpha_{i}$, where (k_{0}, \ldots, k_{e-1}) called the content for the weight.

Models of the Kashiwara Crystal of type A

External

 Littelmann Paths of Kashiwara Crystals of Type A rank eOla Amara-Omari ,Malka
Schaps

Kashiwara crystals of Type A

Littelmann paths

The case of $e=2$

The Main Result

There are two important ways of describing $B(\Lambda)$:

- By e-regular multipartions, sets of r partitions.

■ By a geometric way called Littelmann paths.
The problem: We get these two ways recursively, so maybe there is a way to pass from a way to another, such that we use one way to determine the other way directly ?

The Littelmann path model for $B(\Lambda)$

External

 Littelmann Paths of Kashiwara Crystals of Type A rank eOla
Amara-Omari
,Malka
Schaps

Kashiwara crystals of Type A

Littelmann paths

The case of $e=2$

The Main Result

The case $e=3$

- An $L S$-path $\pi(t)$ is a piecewise linear path in the weight space of the Lie algebra \mathcal{G},

$$
\mathfrak{h}^{*}=<\Lambda_{0}, \Lambda_{1} \ldots, \Lambda_{e-1}, \delta>
$$

and parameterized by the real interval $[0,1]$, with $\pi(0)=0$.
■ The set of paths obtained by acting with various f_{i}, starting with the path from 0 to Λ has the structure of a Kashiwara crystal $B(\Lambda)$, as proven by Littelmann [L].

- The straight paths in the piecewise linear paths are rational multiples of weight vectors of defect zero.
- The endpoints of these straight paths are called the corner points, and the final corner point $\pi(1) \in P(\Lambda)$ is the weight of the basis element in $V(\Lambda)$.

The Littelmann path model for $B(\Lambda)$

External

 Littelmann Paths of Kashiwara Crystals of Type A rank eOla
Amara-Omari
,Malka
Schaps

Kashiwara

Littelmann paths

The case of $e=2$

The Main Result

The Littelmann path model for $B(\Lambda)$

External

 Littelmann Paths of Kashiwara Crystals of Type A rank eOla
Amara-Omari
,Malka
Schaps

Kashiwara

crystals of Type A

Littelmann paths

The case of $e=2$

The Main Result

The case
$e=3$
\square We define a function $H_{\epsilon}^{\pi}(t)=<\pi(t), h_{\epsilon}>$, which is simply the projection of the path onto the coefficient of Λ_{ϵ}. We then set

$$
m_{\epsilon}=\min _{t}\left(H_{\epsilon}^{\pi}(t)\right)
$$

This minimum is always acheived at one of the finite set of corner weights.
■ We let $\mathcal{P}_{\text {int }}$ be the set of paths for which this m_{ϵ} is an integer for all $\epsilon \in I$.

The Littelmann path model for $B(\Lambda)$

External

 Littelmann Paths of Kashiwara Crystals of Type A rankOla
Amara-Omari
,Malka
Schaps

Kashiwara crystals of Type A

Littelmann paths

The case of $e=2$

The Main Result

The case $e=3$

Definition

Littelmann's function f_{ϵ} is given on $\mathcal{P}_{\text {int }}$ as follows:

- If $H_{\epsilon}^{\pi}(1)=m_{\epsilon}$, then $f_{\epsilon}(\pi)=0$

■ Set

$$
\begin{aligned}
& t_{0}=\max _{t}\left\{t \in[0,1] \mid H_{\epsilon}^{\pi}(t)=m_{\epsilon}\right\} \\
& t_{1}=\min _{t}\left\{t \in\left[t_{0}, 1\right] \mid H_{\epsilon}^{\pi}(t)=m_{\epsilon}+1\right\}
\end{aligned}
$$

then

$$
f_{\epsilon}(\pi)(t)= \begin{cases}\pi(t) & t \in\left[0, t_{0}\right] \\ \pi\left(t_{0}\right)+s_{\epsilon}\left(\pi(t)-\pi\left(t_{0}\right)\right) & t \in\left[t_{0}, t_{1}\right] \\ \pi(t)-\alpha_{\epsilon} & t \in\left[t_{1}, 1\right]\end{cases}
$$

Example $\Lambda=\Lambda_{0}+\Lambda_{1}, e=2$

External Littelmann Paths of Kashiwara Crystals of Type A rank e
Ola
Amara-Omari
,Malka
Schaps
Kashiwara
crystals of Type A
Littelmann paths
The case of $e=2$
The Main Result
The case $e=3$
Bibliography

Multipartitions

External

 Littelmann Paths of Kashiwara Crystals of Type A rank eOla Amara-Omari ,Malka Schaps

Kashiwara crystals of Type A

Littelmann paths

The case of $e=2$

The Main Result

The case
$e=3$
Bibliography

Let

$$
\begin{aligned}
& \Lambda=\Lambda_{k_{1}}+\Lambda_{k_{2}}+\cdots+\Lambda_{k_{r}} \\
& =c_{0} \Lambda_{0}+\cdots+c_{e-1} \Lambda_{e-1}
\end{aligned}
$$

be an integral dominant weight. We define the residue for the node (i, j) in Young diagram that corresponds to e-regular multipartition λ is

$$
k_{\ell}+j-i
$$

This will be called a k_{ℓ}-corner partition.

Graphic Diagram of Littelmann Paths

External Littelmann Paths of Kashiwara Crystals of Type A rank e
Ola
Amara-Omari
,Malka
Schaps

Kashiwara
crystals of Type A

Littelmann paths

The case of $e=2$

The Main Result

The case
$e=3$

Standard Littelmann paths for $e=2$

External

 Littelmann Paths of Kashiwara Crystals of Type A rank eOla
Amara-Omari
,Malka
Schaps

Kashiwara crystals of Type A

Littelmann paths

The case of $e=2$

The Main Result

A Littelmann path will be called standard if the rational numbers are of the form

$$
\begin{equation*}
e_{m}=\frac{c_{m}}{d_{m}} \tag{1}
\end{equation*}
$$

where d_{m} was the number of nodes added to a defect 0 multipartion with first row $m-1$ to get that for m, and c_{m} is the number of nodes in the intersection of these added nodes with our multipartition.

The case of $\Lambda=\Lambda_{0}, e=2, r=1$

External

 Littelmann Paths of Kashiwara Crystals of Type A rank eOla
Amara-Omari
,Malka
Schaps

Kashiwara crystals of Type A

Littelmann paths

The case of
$e=2$
The Main Result

The case
$e=3$

Definition

Let λ be an e-regular partition, for $e=2, r=1$, we call λ alternating if the parity of the rows alternates between odd and even.

Definition

Segment is a sequence of rows differing by one.

Definition

θ_{n} is the hub of defect 0 partition that is a triangle partition, and it equal to

$$
\theta_{n}= \begin{cases}{[-n, n+1]} & n \equiv 1 \bmod (2) \\ {[n+1,-n]} & n \equiv 0 \bmod (2)\end{cases}
$$

The case of $\Lambda=\Lambda_{0}, e=2, r=1$

External

The case of $e=2, \Lambda=\Lambda_{0}$

External

 Littelmann Paths of Kashiwara Crystals of Type A rankOla
Amara-Omari ,Malka
Schaps

Kashiwara crystals of Type A

Littelmann paths

The case of $e=2$

The Main Result

The case $e=3$

Example

$$
\lambda=(8,7,4,1) .
$$

There are three segments :

$$
\mu_{1}=(8,7), \mu_{2}=(4), \mu_{3}=(1)
$$

Then

$$
\begin{aligned}
& n_{1}=8, b_{0}=0, n_{1}^{\prime}=8 \\
& n_{2}=4, b_{1}=2, n_{2}^{\prime}=6 \\
& n_{3}=1, b_{2}=3, n_{3}^{\prime}=4 \\
& n_{4}=0, b_{3}=4, n_{4}^{\prime}=4 .
\end{aligned}
$$

so the the LS-representation of the Littelmann path is

$$
\left(\theta_{8}, \theta_{7}, \theta_{6}, \theta_{5}, \theta_{4}: \frac{2}{8}, \frac{2}{7}, \frac{3}{6}, \frac{3}{5}, \frac{4}{4}\right)
$$

Residue-homogeneous multipartitions for $e=2$

External Littelmann Paths of Kashiwara Crystals of Type A rank e

Ola Amara-Omari ,Malka
Schaps

Kashiwara crystals of Type A

Littelmann paths

The case of $e=2$

The Main Result

The case $e=3$

The following condition will ensure that the end points of all the rows would have the same residue 0 or 1 .

Definition

A multipartition will be called residue homogeneous if it satisfies the following conditions:

- each partition has rows of alternating parity,
- all zero corner partitions have first rows of the same parity and the 1-corner of opposite parity,

Definition

A residue-homogeneous multipartition will be called strongly residue homogeneous if it satisfies the following conditions:

■ For every non-initial partition, if n is the length of the first row, then the previous partition ends in a triangle with n

Residue-homogeneous multipartition for

$$
\Lambda=a \Lambda_{0}+b \Lambda_{1}, e=2, r=a+b
$$

External Littelmann Paths of Kashiwara Crystals of Type A rank e

Ola
Amara-Omari
,Malka
Schaps

Kashiwara crystals of Type A

Littelmann paths

The case of $e=2$

The Main Result

Definition

In the case $e=2, r>1$, a segment is a sequence of rows with difference 1 , the segment can go on the next partition if the first row of the next partition is equal the number / of the column of the previous partition, and if we are in the boundary between 0 and 1 , the length of the first row should be $I \pm 1$.

We succeeded in connecting between the multipartition and the Littelmann path by cutting the Young diagram to segments.

Example for the connections with the multipartition model for $\Lambda=a \Lambda_{0}+b \Lambda_{1}, e=2, r=a+b$

External

 Littelmann Paths of Kashiwara Crystals of Type A rank eOla Amara-Omari
,Malka
Schaps

Kashiwara crystals of Type A

Littelmann paths

The case of $e=2$

The Main Result

The case $e=3$

Example : $\Lambda=2 \Lambda_{0}+\Lambda_{1}, e=2$, $\lambda=[(5,2,1),(1), \phi]$

External

 Littelmann Paths of Kashiwara Crystals of Type A rank eOla

Amara-Omari

,Malka
Schaps

Kashiwara
crystals of Type A

Littelmann
paths
The case of $e=2$

The Main Result

The case $e=3$

We get this external multipartition by $\left(f_{0} f_{1} f_{0} f_{1}^{2} f_{0}^{4}\right) u_{\phi}$. We have three segments,

$$
\begin{aligned}
& c_{1}=2, c_{2}=2, c_{3}=3, c_{4}=1, c_{5}=1 \\
& d_{1}=2, d_{2}=5, d_{3}=8, d_{4}=11, d_{5}=14 \\
& \begin{array}{|l|l|l|l|l|}
\hline 0 & 1 & 0 & 1 & 0 \\
\hline 1 & 0 & &
\end{array}
\end{aligned}
$$

ϕ

Example : $\Lambda=2 \Lambda_{0}+\Lambda_{1}, e=2$, $\lambda=[(5,2,1),(1), \phi]$

External

 LittelmannPaths of Kashiwara Crystals of Type A rank e

Ola
Amara-Omari
,Malka
Schaps

Kashiwara crystals of Type A

Littelmann
paths
The case of $e=2$

The Main Result

The case
$e=3$

The LS-representation is :

$$
\left(\psi_{5}^{-}, \psi_{4}^{-}, \psi_{3}^{-}, \psi_{2}^{-}, \psi_{1}^{-}: \frac{1}{14}, \frac{1}{11}, \frac{3}{8}, \frac{2}{5}, \frac{2}{2}\right)
$$

ψ_{m}^{-}is the weight of the multipartition of defect 0 , with Weyl group word beginning in s_{0}, where all the 0 -corner partitions have the same length of first row m.
We write suitable equations to calculate c_{m} and d_{m} directly from the multipartition[OS1]

External Littelmann Paths

External

 Littelmann Paths of Kashiwara Crystals of Type A rank eOla Amara-Omari ,Malka
Schaps

Kashiwara

 crystals of Type ALittelmann paths

The case of $e=2$

The Main
Result
The case
$e=3$

The graphic diagram reflects the decomposition into segments of the multipartition. If the vertex of $P(\Lambda)$ is external, then the graph lies in the second or fourth quadrant, with a long straight path of length giving the rows of the segment, and an oscillating part whose length depends on the offset between the segments.

Reduced crystal, $e=2, \Lambda=2 \Lambda_{0}+\Lambda_{1}$, with multipartitions

External

 Littelmann Paths of Kashiwara Crystals of Type A rank eOla Amara-Omari ,Malka Schaps

Kashiwara

 crystals of Type ALittelmann paths

The case of $e=2$

The Main Result

The case $e=3$

The Main Result

External

 Littelmann Paths of Kashiwara Crystals of Type A rank eOla
Amara-Omari
,Malka
Schaps

Kashiwara

Theorem

In the case $e=2$, the Littelmann path corresponding to a strongly residue homogeneous multipartition is standard

The set of all strongly residue-homogeneous multipartitions can be determined non-recursively, and then the corresponding Littelmann path constructed.

Standard Littelmann paths for

$$
\Lambda=a \Lambda_{0}+b \Lambda_{1}+c \Lambda_{2}, e=3
$$

External

 Littelmann Paths of Kashiwara Crystals of Type A rank eOla
Amara-Omari
,Malka
Schaps

Kashiwara crystals of Type A

Littelmann paths

The case of
$e=2$
The Main Result

The case $e=3$

The general case is too complicated for finding formulas, but for periodic Weyl group elements it is possible. We consider periods 3 and 4.

■ Periodic Weyl group element of period 3. We choose to add nodes on our multipartitions in the order $0,1,2,0,1,2 \ldots$
■ Periodic Weyl group element of period 4. The reduced word are those of the form

$$
\left(s_{1} s_{0} s_{2} s_{0}\right)\left(s_{1} s_{0} s_{2} s_{0}\right) \cdots=s_{1} s_{2} s_{0} s_{2} s_{1} s_{2} s_{0} s_{2} \cdots
$$

$$
\Lambda=\Lambda_{0}+\Lambda_{1}+\Lambda_{2}, e=3, \lambda=[(15,4,2), \phi, \phi]
$$

External

Littelmann
Paths of Kashiwara Crystals of Type A rank e

Ola Amara-Omari ,Malka
Schaps

Kashiwara crystals of Type A

Littelmann paths

The case of $e=2$

The Main Result

The case $e=3$

Bibliography

For 3 period Weyl words we get the the long path and oscillating paths corresponding to segments like the case $e=2$

Bibliography

External

 Littelmann Paths of Kashiwara Crystals of Type A rank eOla Amara-Omari ,Malka Schaps

Kashiwara crystals of Type A

Littelmann paths

The case of $e=2$

The Main Result

The case $e=3$

Bibliography
O. Barshavsky, M. Fayers, M. Schaps, A non-recursive criterion for weights of highest-weight modules for affine Lie algebras, Israel Jour. of Mathematics, vol.197(1) (2013), 237-261.

固 J. Chuang and R. Rouquier, Derived equivalences for symmetric groups and s/2 categorifications, Ann. of Math. (2) 167 (2008), no. 1, 245-298.
(M. Fayers, Weights of multipartitions and representations of Ariki-Koike algebras, Adv. Math. 206 (2006), 112-144.
睩 V. Kac, Infinite Dimensional Lie Algebras, 3rd ed., Cambridge University Press (1990).
[0. M. Kashiwara, The crystal base and Littelmann's refined Demazure character formula, Duke Math. J. 1 (1993) 839-858.
(P. Littelmann, Path and root operators in representation theory, Annals of Math., 142 (1995), 499-525.
(A. Kleshchev, Representation theory of symmetric groups and related Hecke algebras, Bull. Amer. Math. Soc. 47 (2010), 419-481.
(in O. Omari \& M. Schaps, External Littelmann paths of Type A, arXiv 1707.08720.

```
        External
        Littelmann
        Paths of
        Kashiwara
    Crystals of
Type A rank e
            Ola
Amara-Omari
    ,Malka
    Schaps
```

Thank you for your attention.
Kashiwara crystals of Type A

Littelmann paths

The case of $e=2$

The Main Result

The case
$e=3$
Bibliography

```
        External
        Littelmann
        Paths of
        Kashiwara
    Crystals of
Type A rank e
        Ola
Amara-Omari
    ,Malka
    Schaps
```

Thank you for your attention.

Kashiwara
crystals of
Type A
Littelmann
paths
The case of
$e=2$
The Main
Result
The case
$e=3$

Bibliography

THE END

Ola Amara-Omari ,Malka Schaps
External Littelmann Paths of Kashiwara Crystals of Type A ran

